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Abstract
In this paper we propose a novel measurement scheme, based on a double quantum-dot
detector, for reading out the qubit information sensed by the detector as a variation of the
interdot coupling. By investigating the detector in the static qubit case, we find a sensitive
qubit–detector response region determined by the detector geometry. Then we study quantum
measurement of the information stored in a dynamic qubit. It is verified that whether the
detector can perform well is closely dependent on the ratio of the right dot–lead coupling to
interdot coupling in the detector, while the interdot Coulomb interaction only plays a trivial
role. Furthermore, it is shown that the dephasing time of the qubit is strongly influenced by the
difference between the interdot couplings of the detector corresponding to two qubit states. This
work provides some helpful instructions on how to devise an effective qubit detector.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With the rapid advance in quantum information processing,
quantum measurement (QM) in mesoscopic structures has
attracted extensive attention in the last decade, both
experimentally and theoretically [1–23]. To sum up, three
kinds of QM detectors have been proposed so far: quantum
point contact detectors, single quantum-dot (QD) detectors,
and double quantum-dot (DQD) detectors. It has been
demonstrated that quantum point contact can be utilized as
an effective detector for reading out the quantum information
stored in a charge-based DQD qubit [10–15]. Furthermore,
it is suggested that the single QD structure is also useful for
QM, which is more attractive than a quantum point contact
detector in some aspects [16, 17]. Unfortunately, a single QD
detector only can work at very low temperatures [9]. Recently,
a new kind of detector, a DQD detector, has been found to be
a sensitive detector which can perform well even at a relatively
much higher temperature [18–23]. For the DQD detector

scheme studied in [19–21], QM is implemented through the
Coulomb interaction between electrons in QD-2 and QD-R
(similar to figures 1(a) and (b), but the qubit is placed near
QD-R). A comparison with the case in which the qubit is
placed near QD-L demonstrates that putting the qubit near QD-
L would lead to a worse performance [20]. One may wonder
what happens if the qubit is placed near the potential barrier
sandwiched between QD-L and QD-R. Is this geometrically
symmetrical DQD detector still able to read out the qubit
information effectively?

Now, we propose a novel QM scheme based on the
positional rearrangement of the DQD detector and the qubit
(see figure 1). In this new setup the qubit is placed right
above the potential barrier between QD-L and QD-R, which
makes the entire system, including the qubit and the detector,
a completely symmetrical structure. As schematically shown
in figure 1(c), the detector will work with a large-bias voltage,
where the energy levels of two QDs are inside the chemical
potentials μL of the left lead and μR of the right one, and the

0953-8984/08/075210+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/7/075210
mailto:jiangzhaotan@bit.edu.cn
http://stacks.iop.org/JPhysCM/20/075210


J. Phys.: Condens. Matter 20 (2008) 075210 Z-T Jiang et al

Figure 1. QM of the qubit (QD-1 and -2 coupled by interdot
coupling �) through a detector, a coupled double QD (QD-L
and -R), sandwiched between left and right leads. The electron
evolving from QD-1 (a) to QD-2 (b) changes the detector interdot
coupling from γ1 to γ2. (c) Energy diagram of a detector at work.
The two curves in QD-L and -R show the density of states in the case
of γ = 0. The filled circle above the barrier between two QDs
denotes the electron in the qubit with the electrostatic potential
represented by the dotted curves.

tunneling rates are much smaller than the chemical potential
difference. In this case, the current is usually influenced by
the energy level difference of QD-L and QD-R, as well as
the interdot coupling. Obviously, the electrostatic potential
induced by the electron in the qubit (denoted by a filled
circle) will lead to the same effect on both the left and right
halves separated by the barrier between QD-L and QD-R.
Consequently the energy level difference of QD-L and QD-R
is kept invariant in the process of qubit evolution. Therefore,
the current variation is mainly or even wholly caused by the
variation of the interdot coupling in the large-bias case. In
principle, this kind of qubit–detector rearrangement is very
interesting, for the following reasons: (i) A longer dephasing
time. As is well known, in a symmetrical DQD structure an
extra electron can tunnel back and forth between two QDs via
the so-called Rabi oscillation. For most of time the electron
dwells in two QDs and has little time to stay in the barrier
region between two QDs. Very naturally, this short time for
which the electron stays in the barrier region certainly reduces
the duration of the qubit–detector interaction, thus increasing
the dephasing time of the qubit. (ii) A very large visibility.
If the interdot coupling γ is devised to be relatively small,
a moderate Coulomb interaction from the qubit electron can
switch off the detector current, which enables one to obtain
a convenient largest visibility of 2 (to be discussed below).
(iii) A very sensitive qubit–detector response region. In this
sensitive region, the same interdot coupling variation �γ =
γ1 − γ2, with γ1 and γ2 representing the interdot couplings in
the detector when the qubit electron is localized in QD-1 and
QD-2, respectively, will produce the largest current oscillation
amplitude (i.e. the strongest signal), greatly beneficial to QM.
Therefore, these adjustable physical parameters �R, γ , and �γ

can make one flexibly control and improve the quality of the
QM. By precise parameter regulation, one can establish the
optimal QM of the qubit information both with long dephasing
time and strong signals.

With the aim of designing an effective DQD detector to
perform a good QM of the dynamic qubit, we study quantum
transport through the DQD detector first for a static qubit and
then for a dynamic one. In the static qubit case, we find that
there exists a sensitive qubit–detector response region as the
detector current varies with the interdot coupling. Also, we
find that the visibility of the current signal can be easily and
greatly improved by adjusting the interdot coupling γ and the
difference �γ . Then we turn to discuss QM of the dynamic
qubit. It is demonstrated that the ratio �R/γ plays a crucial role
in the quality of the QM while the interdot Coulomb interaction
in the detector only leads to some quantitative modification of
the detector current. Furthermore, we show that an increase
in �R will make the dephasing time longer. Finally, we
consider the effect of γ2 and �γ on the quality of QM. It is
demonstrated that for a certain �γ , the signal amplitude can
be enlarged by choosing a suitable γ2 in the sensitive qubit–
detector response region. However, for a certain γ2, increase
in �γ will make the qubit decay more quickly to a stationary
state, suppressing the dephasing time.

The paper is organized as follows: In section 2 we derive
the modified rate equation for the entire system. The transport
properties of the DQD detector in the case of a static qubit are
shown in section 3. Then we study the process of measuring
the qubit information in section 4. Lastly a brief conclusion is
outlined in section 5.

2. Modified rate equation

The entire setup shown in figure 1 can be modeled by the
Hamiltonian H = HQ + HD + HI with

HQ = E1a†
1a1 + E2a†

2a2 + �(a†
1a2 + H.c.), (1a)

HD =
∑

α=l,r,L ,R

Eαc†
αcα + γ (c†

LcR + c†
RcL) + UnLnR

+
[
∑

l

�lc
†
l cL +

∑

r

�r c†
r cR + H.c.

]
, (1b)

HI = −�γ a†
2a2(c

†
LcR + H.c.). (1c)

Here HQ, HD, and HI denote the Hamiltonian of the qubit,
the detector, and the interaction between them, respectively,
while a†

1,2(a1,2), c†
L,R(cL,R), and c†

l,r (cl,r ) are the creation
(annihilation) operators of the electron in the qubit, the two
QDs in the detector, and the two leads. The parameters
� and γ represent the hopping amplitudes of the electron
between the two single-QD states in the qubit and the detector,
respectively, and U denotes the Coulomb repulsion interaction
between two electrons in two QDs of the detector. The
detecting mechanism can be easily understood from a physical
viewpoint. Obviously, the electron localized in QD-1 and QD-
2 will induce a different variation of the electrostatic potential
barrier between QD-L and QD-R. Certainly this variation will
have some effect on the electrons flowing from the left lead
through QD-L and QD-R to the right lead. It is expected that
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one will be able to extract the quantum information stored in
the qubit by detecting this response of the current to the charge
distribution in the qubit. Mathematically, this is implemented
by appending a qubit–detector interaction term, HI, which
reflects that when the extra electron is in QD-2 an effective
variation �γ appears and the resulting hopping amplitude
becomes γ2 = γ1 − �γ .

In order to find the current through the detector, one
can use the basic current definition I = dQ/dt to calculate
the current through the αth (α ∈ L or R) lead as Iα(t) =
d〈eNα(t)〉/dt , where Nα(t) represents the number of electrons
in lead-α at time t . Therefore, how to obtain this important
physical parameter becomes a key step, which can be fulfilled
by using the modified rate equations proposed by Gurvitz [24].
To begin with, let us first analyze the possible electron
configurations in the reduced system with only four QDs. It
can be found that there are four available states: (a), both
QDs are empty; (b), only QD-L is occupied; (c), only QD-R is
occupied; and (d), both QDs are occupied, with the extra qubit
electron in QD-1. In the mean time, the corresponding states
are denoted by (a′, b′, c′, d ′) while the extra qubit electron
stays in QD-2. According to the electron occupation in the
right lead, the many-body wavefunction of the entire system
can be written in the occupation number representation as

|�(t)〉 =
[

Va +
∑

l

Vblc
†
Lcl +

∑

l

Vclc
†
Rcl

+
∑

l<l′
Vdll′ c

†
Lc†

Rcl cl′ + · · ·
]

a†
1 |0〉

+
[

Va′ +
∑

l

Vb′lc
†
Lcl +

∑

l

Vc′lc
†
Rcl

+
∑

l<l′
Vd ′ll′ c

†
Lc†

Rclcl′ + · · ·
]

a†
2 |0〉. (2)

Here, |0〉 is defined as a vacuum state with no electron in any
QD and all the levels in both leads are initially filled with
electrons up to the chemical potentials μL and μR. All the
V...[≡ V...(t)]’s are the time-dependent probability amplitudes
of finding the entire system in the corresponding states. For
example, Vbl denotes the amplitude at which the qubit electron
is localized in QD-1, and the electron initially in level El

is tunneled into QD-L with a hole being left in lead L. By
substituting the Hamiltonian equation (1) and the wavefunction
equation (2) into the time-dependent Schrödinger equation

ih̄
d|�(t)〉

dt
= H |�(t)〉, (3)

one can obtain an infinite set of linear algebraic equations for
the probability amplitudes V.... Following Gurvitz’s procedure
we can derive the differential equations

ρ̇n
aa = −�Lρn

aa + �Rρn−1
cc + i�(ρn

aa′ − ρn
a′a), (4a)

ρ̇n
a′a′ = −�Lρn

a′a′ + �Rρn−1
c′c′ + i�(ρn

a′a − ρn
aa′), (4b)

ρ̇n
bb = �Lρn

aa + �Rρn−1
dd + i�(ρn

bb′ − ρn
b′b)

+ iγ1(ρ
n
bc − ρn

cb), (4c)

ρ̇n
b′b′ = �Lρn

a′a′ + �Rρn−1
d ′d ′ + i�(ρn

b′b − ρn
bb′)

+ iγ2(ρ
n
b′c′ − ρn

c′b′), (4d)

ρ̇n
cc = −�0ρ

n
cc + i�(ρn

cc′ − ρn
c′c) + iγ1(ρ

n
cb − ρn

bc), (4e)

ρ̇n
c′c′ = −�0ρ

n
c′c′ + i�(ρn

c′c − ρn
cc′) + iγ2(ρ

n
c′b′ − ρn

b′c′), (4 f )

ρ̇n
dd = �′

Lρn
cc − �Rρn

dd + i�(ρn
dd ′ − ρn

d ′d), (4g)

ρ̇n
d ′d ′ = �′

Lρn
c′c′ − �Rρn

d ′d ′ + i�(ρn
d ′d − ρn

dd ′ ), (4h)

ρ̇n
aa′ = i�(ρn

aa − ρn
a′a′) − �Lρn

aa′ + �Rρn−1
cc′ , (4i )

ρ̇n
bb′ = i�(ρn

bb − ρn
b′b′) + iγ2ρ

n
bc′ − iγ1ρ

n
cb′

+ �Lρn
aa′ + �Rρn−1

dd ′ , (4 j )

ρ̇n
cc′ = i�(ρn

cc − ρn
c′c′) + iγ2ρ

n
cb′ − iγ1ρ

n
bc′ − �0ρ

n
cc′, (4k)

ρ̇n
dd ′ = i�(ρn

dd − ρn
d ′d ′) + �′

Lρn
cc′ − �Rρn

dd ′ , (4l)

ρ̇n
bc = i�(ρn

bc′ − ρn
b′c) + iγ1(ρ

n
bb − ρn

cc) − �0ρ
n
bc/2, (4m)

ρ̇n
b′c′ = i�(ρn

b′c − ρn
bc′) + iγ2(ρ

n
b′b′ − ρn

c′c′) − �0ρ
n
b′c′/2, (4n)

ρ̇n
bc′ = i�(ρn

bc − ρn
b′c′) + iγ2ρ

n
bb′ − iγ1ρ

n
cc′ − �0ρ

n
bc′/2, (4o)

ρ̇n
b′c = i�(ρn

b′c′ − ρn
bc) + iγ1ρ

n
b′b − iγ2ρ

n
c′c − �0ρ

n
b′c/2. (4p)

Here, we assume E2 = E1 = ER = EL = 0 for those
QDs in the qubit and detector, and define a new parameter
�0 ≡ �′

L + �R for convenience. The energy level bandwidths
are defined as �L(R) = 2πρL(R)(E1)|VL(R)(E1)|2 and �′

L =
2πρL(E1)|VL(E1 + U)|2 with ρL(R) denoting the density of
states in the left (right) lead. Finally, we can derive the currents
through the right lead as

IR/e = �R(ρcc + ρc′c′ + ρdd + ρd ′d ′). (5)

3. Detector properties for a static qubit

Bear in mind that the objective of this paper is to extract
the dynamic qubit information from the current flowing
through the nearby DQD detector. However, the temporal
and stationary detector currents are influenced by both the
detector structure and the electron distribution in the qubit.
That is to say, the detector structure will result in one kind of
current variation by itself, which affects the qubit information
readout. Therefore the important task is to obtain a global
understanding of the current variations purely induced by
the detector structure. No doubt this research will provide
a criterion for distinguishing between what kind of current
variation is induced by the detector and what is not.

First, we consider the stationary transport properties of the
DQD detector. In the static qubit case (� = 0), the extra
electron in the qubit is localized in QD-1 or -2. Intuitively, the
stationary current Ī1 (with the electron in QD-1) is larger than
Ī2 (with the electron in QD-2), since the electron in QD-2 will
give rise to a stronger suppression of the hopping amplitude
γ . In these two peculiar cases, the original reduced eight-
dimensional space splits into two subspaces {a, b, c, d} and
{a′, b′, c′, d ′}. Correspondingly, equation (4) will be classified
into two groups: (i) equations (4a), (4c), (4e), (4g), (4m) and
(ii) equations (4b), (4d), (4 f ), (4h), (4n). After solving them
we can obtain the stationary current Īi/e = γ 2

i /(kγ 2
i + k ′)

where k ≡ (�2
R + 2�L�R + �′

L�L)/(�L�R�0) and k ′ ≡ �0/4.
For convenience, we assume � ≡ �L = 1 as the energy unit.
Therefore, the current can be rewritten using the dimensionless
parameters γ̃i ≡ γi/�, �̃R ≡ �R/�, and �̃′

L ≡ �′
L/� as

Īi = γ̃ 2
i

k̃γ̃ 2
i + k̃ ′ (�e), (6)
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Figure 2. (a) Optimized interdot coupling γopt of the detector as a
function of �R in the case of U = 0 (solid curve) and U = ∞
(dashed curve). (b) The stationary currents flowing through the
detector as a function of γ .

where k̃ ≡ (�̃2
R + 2�̃R + �̃′

L)/(�̃R�̃0) and k̃ ′ ≡ �̃0/4 with
�̃0 ≡ �̃′

L + �̃R. We can easily find that Īi/(�e) increases
monotonically with the increase of γi for certain �′

L and �R,
and eventually approaches the saturated value 1/k̃ in the γi →
∞ limit. By a simple analysis we may find a sensitive Īi ∼ γ

response region in the proximity of γopt/� ≡ √
k ′/(3k), where

the largest current variation is able to be obtained for the same
difference �γ . For clarity we plot the optimized γopt as a
function of �R in both cases: U = 0 and U = ∞ (see
figure 2(a)). It can be found that with increasing �R, γopt is
increased in both cases. The most conspicuous difference is
that the optimized interdot coupling for U = 0 is slightly
larger than that of U = ∞, which only makes a quantitative
difference. This also implies that U only plays a trivial role.

Furthermore, we select some sample points (�̃R = 1, 10,
and 50) to explore the effects of γ on the detector currents,
which are shown in figure 2(b). Let us observe the solid
curves (U = 0) first. We can find a steep slope in every I –γ

curve before the current saturates. This steep slope is the most
sensitive qubit–detector response region, which is beneficial
for designing a sensitive detector. This slope is still observed
in the case of U = ∞ (see the dotted curves in figure 2(b)),
further demonstrating that U only plays a quantitative role.

In figure 3 we consider another important parameter,
the visibility, to characterize the detector; this is defined as

P ≡ 2|I1 − I2|/(I1 + I2) [12]. We can see that the visibility
is increased with an increase in �γ but a decrease in γ2. By
comparing those two images in figure 3 we can find that the
visibility is increased with �R. In order to design a sensitive
detector with higher P , we would better carefully optimize
the detector and qubit parameters by taking into account the
following factors: (i) a relatively larger �R and �γ and (ii) a
weaker γ2. This may be viewed as a reference for designing
a DQD detector. It should be pointed out that with this DQD
detector scheme it is easier to obtain the largest visibility of
P = 2 just by assuming γ2 = 0 (i.e. I2 = 0).

4. Measuring dynamic qubits

In this section, we study how to measure the dynamic
information stored in qubit. For simplicity we assume h̄ = 1,
e = 1, and the interdot coupling � in the qubit is always 1�.
The initial condition for QM corresponds to the case in which
the qubit electron is localized in QD-1 and the detector current
I = Ī1. This requires that the detector first evolves into its
stationary state, and then the qubit operation is switched on.
Based on the discussion in section 3 we assume γ1 = � and
γ2 = 0 to ensure QM is carried out with the largest visibility
of P = 2.

Figure 4 shows the time-dependent evolution of the
probability ρ11 (solid curves) and the current I (t) (dotted
curves) for the symmetric (�R = �L) and asymmetric (�R 
=
�L) detectors. First, we inspect those curves in figures 4(a)–
(c) with U = 0 for different �R. Both the current I (t)
and the corresponding probability ρ11 display oscillations as a
function of time. For the small �R = 1� (see figure 4(a)),
the detector cannot follow the qubit oscillations very well.
However, when �R is tuned sufficiently large (e.g. �R = 50�),
the detector is inclined to keep up with the qubit oscillation,
which enables us to extrapolate the qubit information from
the current oscillations, in agreement with the results obtained
by Gilad and Gurvitz [19]. This can be well understood
as follows: when �R is much greater than γ1, the electron
in QD-2 will spend a much shorter time entering the right
lead than returning to QD-L. Obviously, on the one hand this
will decrease the probability of the electron in QD-2 going
back to QD-L, suppressing the multiple interaction between
the qubit and the detector; on the other hand the electron is

0
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Figure 3. Stationary current visibility P as a function of γ2 and �γ in the case of (a) �R = 1� and (b) �R = 50�.
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Figure 4. Time-dependent evolution of the current (solid curve) and
the corresponding electron probability ρ11 (dotted curve). In the case
of U = 0 (U = ∞), (a), (b), and (c) ((d), (e), and (f)) correspond to
�R/� = 1, 10, and 50, respectively.

quickly transmitted into the right lead, reducing the dwell time
of the electron in QD-R and avoiding the destruction of any
electron-carried qubit information. Consequently, the electron
distribution in the qubit can be effectively reproduced by the
current signal. Reduction of the interaction time between the
detector and the qubit can also be observed from the decay
behavior of the probability ρ11, as shown by the dotted curves
in figures 4(a)–(c). As �R increases the decay becomes slower,
reflecting the reduction of the interaction time. However,
one can find that the current oscillation amplitudes become
smaller, as already shown in figure 2(b), which requires a more
sensitive external current meter for measurement. Then we
study the effect induced by the Coulomb interaction U(= ∞)

in figures 4(d)–(f). It is clear that in the case of �R =
1� (figure 4(d)) the Coulomb interaction will induce sharp
differences in the current curve in comparison with the case
of U = 0 (figure 4(a)). As � increases, the difference
becomes negligibly small. This demonstrates that U only make
quantitative modifications to the currents and probabilities,
indicating that it only plays a trivial role in the detection
process.

Then we explore the effect of γ in figure 5(a) when
�γ = 1�. In the case of γ2 = 0 and γ2 = 9� (far away
from γopt ≈ 2�) the oscillation amplitude is very small, while
it is large in the proximity of γ2 = 1.5� and γ2 = 3�, as
expected from figure 2. This verifies that a proper selection of
γ2 will give a larger oscillation amplitude, which is beneficial
to QM. However, one may ask whether the increase in γ2

will destroy the quality of the detection, since a condition for
good QM is �R/γ � 1. In principle, the electron oscillation
period in a qubit should be π , since the interdot coupling is
1. Nevertheless, the period becomes shorter than π when γ2 is
large enough (e.g. γ2 = 9�). This implies that the increase
in γ2 will affect the quality of the QM. Furthermore, by a
statistical analysis of the positions of the peaks and troughs
in the ρ11 curves, we find that γ2 leads to only tiny variations
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Figure 5. (a) Time-dependent currents with �R = 50� and
�γ = 1� for different interdot couplings γ2/� = (i) 0, (ii) 1.5,
(iii) 3, (iv) 5, and (v) 9. Parts ((b), (c)) and ((d), (e)) display the
time-dependent current (solid curve) and corresponding probability
ρ11 (dotted curve) for γ2/� = 0 and 3, respectively.

of these positions if γ2 is kept sufficiently weak in contrast
to �R (which are not listed here). Also, we find that the
mismatch between most of the peaks in the ρ11 curve and the
corresponding peaks in the current is negative when γ2 = 0
and becomes positive when γ2 is enough large (e.g. γ2 = 1.5),
indicating that there should be a transition position where the
mismatch is almost zero.

Finally, let us pay attention to the influence of �γ .
Figures 5(b)–(e) show the evolution curves for both the weak
measurement regime �γ = 1� and the strong one �γ = 5�

in two cases: γ2 = 0 ((b), (c)) and γ2 = 3� ((d), (e)).
Through a global comparison two distinct characteristics can
be found: (i) An increase in �γ will lead to a much larger
oscillation amplitude, which can be found from the curves
in the initial stage. For example, in figure 5(c) the initial
current oscillation amplitudes (� 0.1�e) for �γ = 5� are
obviously much larger than those (<0.1�e) of �γ = 1�

(see figure 5(b)). This is also the case in figures 5(d) and (e).
(ii) Another important characteristic is that the decay of the
current and probability oscillations becomes quicker as �γ

increases. This demonstrates that although this �γ increase
produces a stronger amplitude which is beneficial for QM, it
also induces a quicker decay in the current signal, shortening
the dephasing time. This result indicates that a suitable �γ

should be designed in order to keep a sufficiently strong signal
to measure and a long enough decay time to perform quantum
operations.

5. Conclusion

In conclusion, a novel type of DQD detector is utilized to detect
the dynamic qubit information. By inspecting the stationary
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detector current for the static qubit, we find a sensitive qubit–
detector response region, indicating that a suitably chosen
interdot coupling can produce a larger detector current signal.
Furthermore, we show that a good QM of a qubit is inclined
to be established by increasing the right dot–lead coupling.
Nevertheless, the interdot Coulomb interaction has only a
trivial role in the quality of the QM. Moreover, we study the
dephasing of the qubit induced by the detector.
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